Perché la governance del ML?
Amazon SageMaker AI fornisce strumenti di governance appositamente creati per aiutarti a implementare il ML in modo responsabile. Con Gestore dei ruoli di Amazon SageMaker è possibile definire le autorizzazioni minime in pochi minuti. Amazon SageMaker Model Cards semplifica l'acquisizione, il recupero e la condivisione di informazioni essenziali sul modello, come gli usi previsti, le classificazioni dei rischi e i dettagli della formazione, dalla concezione all'implementazione. Amazon SageMaker Model Dashboard ti tiene informato sul comportamento del modello in produzione, tutto in un unico posto. L'integrazione di Amazon SageMaker AI e Amazon DataZone semplifica il processo di ottimizzazione del ML e della governance dei dati.
Vantaggi della governance del ML con SageMaker
Effettua l'integrazione con Amazon DataZone
Controlli e disposizioni per la configurazione
Gli amministratori IT possono definire controlli e autorizzazioni dell'infrastruttura specifiche per l'azienda e il caso d'uso in Amazon DataZone. È quindi possibile creare un ambiente SageMaker appropriato in pochi clic e avviare il processo di sviluppo all'interno di SageMaker Studio.
Cerca e scopri le risorse
In SageMaker Studio, puoi cercare e scoprire in modo efficiente dati e risorse di ML nel catalogo aziendale della tua organizzazione. Puoi anche richiedere l'accesso alle risorse che potresti dover utilizzare nel tuo progetto sottoscrivendole.
![Cerca e scopri le risorse](https://d1.awsstatic.com/Asset%20catalogv3.14cec02e359625a32eede9be97f58d76b9780f15.jpg)
Utilizza le risorse
Una volta approvata la richiesta di abbonamento, è possibile utilizzare queste risorse sottoscritte in attività di ML come la preparazione dei dati, l'addestramento dei modelli e l'ingegneria delle caratteristiche all'interno di SageMaker Studio utilizzando JupyterLab e SageMaker Canvas.
Pubblica le risorse
Una volta completate le attività di ML, è possibile pubblicare i dati, i modelli e le feature group nel catalogo aziendale per la governance e la rilevabilità da parte di altri utenti.
![Pubblica le risorse](https://d1.awsstatic.com/Model%20groupv2.eebe8aee62cad4817ef6b8babe85034bdb518bf3.jpg)
Definisci le autorizzazioni
Semplificare le autorizzazioni per le attività di ML
SageMaker Role Manager fornisce una serie di autorizzazioni di base per le attività di ML e profili attraverso un catalogo di policy AWS Identity and Access Management (IAM) predefinite. Le attività di ML possono includere la preparazione e l'addestramento dei dati, mentre i profili possono includere ingegneri di ML e data scientist. È possibile mantenere le autorizzazioni di base oppure personalizzarle sulla base delle proprie specifiche esigenze.
![gestione dei ruoli semplifica le autorizzazioni](https://d1.awsstatic.com/products/sagemaker/ml-governance/feature-1-role-manager-simplify-permissions.b5463f50341d1cfb8418394594045d3f3b5b0edf.png)
Automatizza la generazione delle policy IAM
Con una serie di istruzioni autoguidate, è possibile immettere rapidamente costrutti di governance comuni, come limiti di accesso alla rete e chiavi di crittografia. Dopodiché, SageMaker Role Manager genererà automaticamente la policy IAM. È possibile consultare il ruolo generato e le policy associate dalla console AWS IAM.
Allega le policy gestite
Per personalizzare ulteriormente le autorizzazioni in base al caso d'uso, è possibile collegare le policy IAM gestite al ruolo IAM creato con SageMaker Role Manager. È possibile aggiungere tag per facilitare l'identificazione del ruolo e consentire un maggiore coordinamento tra i servizi AWS.
![allega le policy gestite](https://d1.awsstatic.com/products/sagemaker/ml-governance/feature-2-role-manager-attach-your-managed-policies.5953463bf17f976ffc7134951fc0e244ebe62760.png)
Semplifica la documentazione
Acquisisci informazioni sul modello
SageMaker Model Cards è un repository per le informazioni sui modelli nella Console Amazon SageMaker e aiuta a centralizzare e standardizzare la documentazione dei modelli in modo da poter implementare il ML in modo responsabile. È possibile inserire automaticamente i dettagli della formazione, come i set di dati di input, gli ambienti di formazione e i risultati della formazione, per accelerare il processo di documentazione. È inoltre possibile aggiungere dettagli come lo scopo del modello e gli obiettivi di prestazione.
![informazioni sul modello nella console SageMaker](https://d1.awsstatic.com/products/sagemaker/ml-governance/feature-3-model-cards-capture-model-info.e873b601999865b2d5ac21f42167bd1eddc1498b.png)
Visualizza i risultati della valutazione
È possibile allegare i risultati della valutazione del modello, come le metriche di bias e di qualità, alla Model Card e aggiungere visualizzazioni come i grafici per ottenere informazioni chiave sulle prestazioni del modello.
![le schede del modello visualizzano i risultati della valutazione](https://d1.awsstatic.com/products/sagemaker/ml-governance/feature-4-model-cards-visualize-evaluation-results.22b9bf05128ed542ef68ab97adc4e1c3f04fe750.png)
Condividi model card
È possibile esportare le schede modello in formato PDF per condividerle più facilmente con gli stakeholder aziendali, i team interni o i clienti.
Monitoraggio del modello
Traccia il comportamento del modello
SageMaker Model Dashboard offre una panoramica completa dei modelli e degli endpoint distribuiti, in modo da poter tenere traccia delle risorse e delle violazioni del comportamento del modello in un unico posto. È possibile monitorare il comportamento del modello in quattro dimensioni: qualità dei dati, qualità del modello, deriva dei bias e deriva dell'attribuzione delle caratteristiche. SageMaker Model Dashboard monitora il comportamento grazie all'integrazione con Amazon SageMaker Model Monitor e Amazon SageMaker Clarify.
![pannello di controllo del modello](https://d1.awsstatic.com/products/sagemaker/ml-governance/feature-6-model-dashboard-track-model-behavior.6b85b95bcb69a68f6657b291d80e8a3ec20b1d1f.png)
Automatizza gli avvisi
Inoltre, SageMaker Model Dashboard fornisce un'esperienza integrata per impostare e ricevere avvisi in merito ai processi di monitoraggio dei modelli assenti o non attivi e sulle deviazioni del comportamento dei modelli.
![Automatizza gli avvisi](https://d1.awsstatic.com/products/sagemaker/ml-governance/feature-7-model-dashboard-automate-alerts.77cd908b1b27516b73ea7a45611a210fb046f3a5.png)
Risoluzione delle deviazioni del modello
È possibile analizzare nel dettaglio i singoli modelli e i fattori che hanno un impatto sulle prestazioni nel corso del tempo. Dopodiché, è possibile consultarsi con i professionisti del ML per intraprendere le opportune misure correttive.