AWS Big Data Blog
Build a secure serverless streaming pipeline with Amazon MSK Serverless, Amazon EMR Serverless and IAM
The post demonstrates a comprehensive, end-to-end solution for processing data from MSK Serverless using an EMR Serverless Spark Streaming job, secured with IAM authentication. Additionally, it demonstrates how to query the processed data using Amazon Athena, providing a seamless and integrated workflow for data processing and analysis. This solution enables near real-time querying of the latest data processed from MSK Serverless and EMR Serverless using Athena, providing instant insights and analytics.
Enhancing data durability in Amazon EMR HBase on Amazon S3 with the Amazon EMR WAL feature
In this post, we dive deep into the new Amazon EMR WAL feature to help you understand how it works, how it enhances durability, and why it’s needed. We explore several scenarios that are well-suited for this feature.
Powering global payout intelligence: How MassPay uses Amazon Redshift Serverless and zero-ETL to drive deeper analytics.
In this blog post we shall cover how understanding real-time payout performance, identifying customer behavior patterns across regions, and optimizing internal operations required more than traditional business intelligence and analytics tools. And how since implementing Amazon Redshift and Zero-ETL, MassPay has seen 90% reduction in data availability latency, payments data available for analytics 1.5x faster, leading to 45% reduction in time-to-insight and 37% fewer support tickets related to transaction visibility and payment inquiries.
PackScan: Building real-time sort center analytics with AWS Services
In this post, we explore how PackScan uses Amazon cloud-based services to drive real-time visibility, improve logistics efficiency, and support the seamless movement of packages across Amazon’s Middle Mile network.
How Airties achieved scalability and cost-efficiency by moving from Kafka to Amazon Kinesis Data Streams
Airties is a wireless networking company that provides AI-driven solutions for enhancing home connectivity. This post explores the strategies the Airties team employed during their migration from Apache Kafka to Amazon Kinesis Data Streams, the challenges they overcame, and how they achieved a more efficient, scalable, and maintenance-free streaming infrastructure.
Unlock self-serve streaming SQL with Amazon Managed Service for Apache Flink
In this post, we present Riskified’s journey toward enabling self-service streaming SQL pipelines. We walk through the motivations behind the shift from Confluent ksqlDB to Apache Flink, the architecture Riskified built using Amazon Managed Service for Apache Flink, the technical challenges they faced, and the solutions that helped them make streaming accessible, scalable, and production-ready.
Unify streaming and analytical data with Amazon Data Firehose and Amazon SageMaker Lakehouse
In this post, we show you how to create Iceberg tables in Amazon SageMaker Unified Studio and stream data to these tables using Firehose. With this integration, data engineers, analysts, and data scientists can seamlessly collaborate and build end-to-end analytics and ML workflows using SageMaker Unified Studio, removing traditional silos and accelerating the journey from data ingestion to production ML models.
OpenSearch UI: Six months in review
OpenSearch UI has been adopted by thousands of customers for various use cases since its launch in November 2024. Exciting customer stories and feedback have helped shape our feature improvements. As we complete 6 months since its general availability, we are sharing major enhancements that have improved OpenSearch UI’s capability, especially in observability and security analytics, in this post.
Scalable analytics and centralized governance for Apache Iceberg tables using Amazon S3 Tables and Amazon Redshift
In this post, we’ll build on the first post in this series to show you how to set up an Apache Iceberg data lake catalog using Amazon S3 Tables and provide different levels of access control to your data. Through this example, you’ll set up fine-grained access controls for multiple users and see how this works using Amazon Redshift. We’ll also review an example with simultaneously using data that resides both in Amazon Redshift and Amazon S3 Tables, enabling a unified analytics experience.
Empower financial analytics by creating structured knowledge bases using Amazon Bedrock and Amazon Redshift
In this post, we showcase how financial planners, advisors, or bankers can now ask questions in natural language. These prompts will receive precise data from the customer databases for accounts, investments, loans, and transactions. Amazon Bedrock Knowledge Bases automatically translates these natural language queries into optimized SQL statements, thereby accelerating time to insight, enabling faster discoveries and efficient decision-making.